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1 Point Estimation Strategies

Estimation strategies are techniques we can use to find the values of a model’s parameters that maximize the
probability of observing the empirical data. Point estimation strategies are techniques we employ to find the
individual values (as opposed to the distribution) of the unknowns that are a “best fit” for our data. We
present two point estimation techniques: the Methods of Moment Estimator and the Maximum Likelihood
Estimator.

Before we dig into estimation strategies, let us establish some notation and terms. First, the model’s
parameters are called the estimand while the values that we believe are a reasonable characterization of
the estimand are referred to as estimates; and the technique we use to find the estimand is known as the
estimator. We typically denote out estimate with a hat; so if our estimand of interest is θ, then θ̂ would be
the estimate of interest.

1.1 Method Moments Estimator

The Method of Moments Estimator (MOME) is a technique that takes advantage of moments in probability
(i.e., quantities that can uniquely identify a distribution; e.g., mean and variance) and assumes that we can
equate the empirical and theoretical moments to one another, as seen in Table 1.

The MOME has the following setup:

1. Represent the data as a probabilistic model f with unknown constants θ: X1, . . . , Xn ∼ f(θ)

2. If we have k estimands, then we set up k systems of equations where we equate each empirical and
theoretical moment to one another

1



Moment Theoretical Empirical

Mean µ = E[Xi] x̄ =

N∑
i=1

xi

N

Variance E[(Xi − µ)2] 1
N

(
N∑
i=1

(xi − x̄)2
)

...
...

...

kth centered moment E[(Xi − µ)k] 1
N

(
N∑
i=1

(xi − x̄)k
)

Table 1: Centered Empirical and Theoretical Moments for N samples of Xi ∼ fX(θ)

3. Solve the system for the unknown constants; the solutions are labeled as θ̂
Example 1. Suppose X1, . . . , Xn

iid∼ Normal(µ, 1) with unknown constant µ. Let us find µ̂MOME , the
estimate of µ found via method of moments.

First, notice that we only have one unknown, µ. So, we will assume only the first theoretical and empirical
moments are equivalent to one another. So, we assume E[Xi] = x̄. So,

µ̂MOME = 1
n

n∑
i=1

xi.

Example 2. We can now consider a slightly more complicated situation. Suppose

X1, . . . , Xn
iid∼ Normal(µ, σ2),

with unknown constants µ, σ2. Let us find µ̂MOME , σ̂2
MOME , the estimates of µ, σ2 found via method of

moments.

First, recognize that we only have two unknown constants, so we will only equate two moments to each other;
we assume

E[Xi] =
n∑
i=1

xi and

E[(Xi − µ)2] = 1
n

n∑
i=1

(xi − µ)2
.

Notice that µ = E[Xi], so the method of moments estimate for the true mean is simply the sample mean:
µ̂MOME =

n∑
i=1

xi. Now, we can substitute µ̂MOME for µ in the calculation of

E[(Xi − µ)2] = 1
n

n∑
i=1

(xi − µ̂MOME)2
.

Since σ2 = E[(Xi − µ)2], the method of moments estimator for σ2 is

σ̂2
MOME = 1

n

n∑
i=1

(
xi −

n∑
i=1

xi

)2

.

Example 3. One drawback of the method of moments estimator is that in a misspecified data generating
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process, our method of moments estimator may yield nonsensical estimates. Consider the following problem.
Suppose X1, . . . , Xn

iid∼ Binomial(θ,N) where θ is the probability of success and N is the number of
independent Bernoulli trials. Suppose θ,N are both unknown but we observe the realizations x1, . . . , xn. Let
us estimate θ,N using the method of moments estimator.

We know that the first moment for a Bernoulli random variable is Nθ. So, our theoretical first moment is
E[X] = Nθ. And our empirical first moment is x̄ = 1

n

n∑
i=1

xi. Additionally, the second central theoretical

moment is E[(Xi − E[X])2] = Nθ(1 − θ), and the second central empirical moment is Sn = 1
n

n∑
i=1

(xi −
1
n

∑n
i=1 xi)2. Then, we can set up a system of equations by equating the theoretical and empirical moments

together. So,

Nθ = x̄

Nθ(1− θ) = Sn.

Then, we can solve for θ̂: θ̂ = x̄
N . And using our second moment, we can find N :

Sn = Nθ(1− θ)

= N

(
x̄

N

)(
1− x̄

N

)
= (x̄)

(
N − x̄
N

)
.

We can then perform some algebra to find that N = x̄2

(x̄−Sn) . So, θ̂MOME = x̄
N and N̂MOME = x̄2

(x̄−Sn) . So,
we can plug N into

θ̂MOME = X̄n

N

= X̄n
(BarXn − Sn)

X̄2
n

= (BarXn − Sn)
X̄n

.

So, the final solution reads as follows:

θ̂MOME = (BarXn − Sn)
X̄n

N̂MOME = X̄2
n

(BarXn − Sn) .

However, the MOME has one key issue: its estimators do not follow the same parametric space as the
unknown constants, which could lead to wrong analyses. For example, under the Binomial distribution,
0 ≤ θ ≤ 1, so 0 ≤ 1− θ ≤ 1, which implies Nθ > Nθ(1− θ). In other words, the theoretical variance must be
greater than the theoretical mean in the case of the Binomial distribution. However, it is very possible that
the empirical variance is less than the empirical mean, which will yield an estimate of N̂MOME < 0, which is
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not possible. However, if there is a large sample size and the proposed model is not mis-specified, the method
of moments estimator will likely give a good estimate.

This leads to a discussion of different samples. Often times, in estimation, people say there are empirical
moments computed directly from the data and the theoretical moments. However, in practice, there are
empirical moments that summarize the data, true theoretical moments from the true DGP that are accessible,
and the model specified theoretical moments from the model/DGP approximation. In reality, the specified
model may not be the true DGP but hopefully approximates the true DGP; if the specified model is not
properly specified, there are many issues that may arise. So, careful precision is required in MOME.

1.2 Maximum Likelihood Estimator

The maximum likelihood estimation technique is another point estimation approach that identifies the set of
parameter values that are most representative of the given data.

Let us motivate this section with an example.
Example 4. Suppose X1, . . . , Xn

iid∼ Normal(µ, 1) and represents the expression of gene called TPS1 in each
of the n samples. Assume we observe the realizations x1, . . . , xn but not µ.

Then, the 2x2 table of this example would look as follows:

Observed Unobserved
Variable x1, . . . , xn NA
Constant NA µ

And the likelihood would look as follows:

likelihood =
n∏
i=1

Normal(xi|µ, 1)

=
n∏
i=1

1√
2π
e

−(xi−µ)2
2

= 1√
2π

n∏
i=1

e
−(xi−µ)2

2

= 1√
2π
e
∑n

i=1
−(xi−µ)2

2 .

The likelihood is an expression of the unknown constant µ given all the constants. Simply, the likelihood is a
function of x1, . . . , xn, µ, namely the probability of x1, . . . , xn given µ. Since µ is the only unknown, this is
the same as saying the likelihood is a function of µ. Suppose the histogram of our data looks as follows:
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Distribution of Expression of TPS1

Expression of TPS1
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We want to estimate µ, an unknown constant that describes the normal distribution for the data. Suppose
we randomly select a µ1, µ2, µ3. Each µ is a parameter for a distribution with their own forms, drawn below:

Distribution of Expression of TPS1

Expression of TPS1
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Normal(µ, 1)

µ1̂ = µ1

µ2̂ = µ2

µ3̂ = µ3

We have three random estimates for µ̂. Maximum likelihood estimation will allow us to find the best estimate
for this distribution. Recall, these are ways of representing the likelihood:

likelihood = P(X1 = x1, . . . , Xn = xn|µ),

which is a function of µ.

5



The likelihood can be thought of as a score of the fit of a distribution for each of the unknown constants. And
we want to maximize this score. Without µ, 1√

2π e
∑n

i=1
−(xi−µ)2

2 is just a mathematical expression. However,
if we consider specific µ̂, the likelihood(µ̂) is an actual value.

Now, the maximum likelihood estimate is the value of µ̂ that makes x1, . . . , xn most probable. In other
words, the maximum likelihood estimator is a function of the observed random variables that maximizes the
likelihood. Mathematically,

µ̂(x1, . . . , xn) = µ̂MLE = arg max
µ

likelihood(µ).

Because the likelihood is essentially a function of µ, we can plot this function and find the maximum, as seen
below:

2 4 6 8 10

Likelihood(µ̂) = likelihood(µ|X1 = x1,...,Xn = xn)

µ̂

Li
ke

lih
oo

d

So, to recap, the maximum likelihood estimator is the argument that maximizes the likelihood of the unknown
constants given the data. So, in a more general case, the maximum likelihood estimator of the unknown
constants θ is

θ̂MLE = arg max
θ

likelihood(θ).

1.2.1 Log Likelihood

One thing to recognize when maximizing likelihoods is that the argument that maximizes the likelihood is
the same argument that maximizes the log of the likelihood because the logarithmic function is an always
increasing function. Additionally, because the log of products is the sum of logs, the log likelihood is often
times computationally easier to compute than the likelihood, which tends to have many products. The log
likelihood is simpler and easier to maximize. We denote likelihood of θ as L(θ) and the log likelihood of θ as
l(θ). Please note that in general, we refer to log as being the natural log function.
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Example 5. Let us find the log likelihood of

L(µ) = 1√
2π
e

−1
2

n∑
i=1

(xi−µ)2

.

Since the log of products is the product of logs,

l(µ) = lnL(µ)

= ln

 1√
2π
e

−1
2

n∑
i=1

(xi−µ)2


= ln 1√

2π
+ log

e−1
2

n∑
i=1

(xi−µ)2

 .
Now, because ln(ex) = x,

l(µ) = ln 1√
2π

+ −1
2

n∑
i=1

(xi − µ)2.

Recall that log
(
a
b

)
= log a− log b and ln(1) = 0. So,

l(µ) = ln 1√
2π

+ −1
2

n∑
i=1

(xi − µ)2

= ln(1)− ln(
√

2π) + −1
2

n∑
i=1

(xi − µ)2.

By applying the same log operations and expanding (xi − µ)2,

= 0− 1
2 ln(2π) + −1

2

n∑
i=1

(xi − µ)2

= −1
2 [ln(2) + ln(π)] + −1

2

n∑
i=1

(xi − µ)2

= −1
2 [ln(2) + ln(π)] + −1

2

n∑
i=1

(x2
i + µ2 − 2xiµ)

= −1
2 [ln(2) + ln(π)] + −1

2

n∑
i=1

(x2
i ) +

n∑
i=1

(µ2)−
n∑
i=1

(2xiµ),

which is easier to deal with analytically.

1.2.2 Invariance of Maximum Likelihood Estimator

One key strength of maximum likelihood estimation is invariance. In short, if θ̂MLE is the maximum likelihood
estimator for L(θ), then g(θ̂MLE) is the maximum likelihood estimator for L(g(θ)).
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Definition 1.1: Invariance Property of MLE

If the MLE estimate for θ is θ̂, then the MLE estimate for f(θ) is f(θ̂) for any function f .

Example 6. Consider the random variables X1, . . . , Xn
iid∼ Normal(3, σ2). In this case, σ2 is unknown.

What is σ̂2
MLE .

Consider the following two distributions for our data; what is a better distribution to describe the data?
Based on these two proposed distributions, the red distribution is a significantly better fit for the data because
it follows it more closely.

Maximum Likelihood: Unknown Variance Example

Random Data
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Normal(3, σ2)
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2̂ = σ1
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σ2̂ = σ2

Now, let us consider the likelihood function. Because we are looking for the σ2 that maximizes the likelihood,
which also maximizes the log likelihood, which ever one we consider really does not matter. While we can
compute this by hand, consider the following plot of the likelihood/log likelihood over different values of σ2:
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Unknown Variance Problem

σ2
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d(
σ2 )

So, σ̂2
MLE is the value that maximizes the likelihood of the model in the first place. Notice, if the estimate if

below 0, there is no likelihood associated with that value. That is because the likelihood estimator will follow
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the same support as the constant we are hoping to estimate. Since variance is always greater than or equal
to 0, the maximum likelihood estimator for the variance will always be greater than or equal to 0 as well.
Because the likelihood is defined over the exact parametric space that defines the model (here, the model is
X1, . . . , Xn

iid∼ Normal(3, σ2)), the possible for the maximum likelihood estimate will always like in the same
parametric space. This property of maximum likelihood is one of the reasons it is so popular.
Example 7. Suppose X1, . . . , Xn

iid∼ Normal(3, σ2). Let us find σ2
MLE .

So here, we want to estimate a function of σ2, θ̂MLE =
√
σ2

µ = σ
3 . This computation is complicated. If we find

the argument that maximizes Likelihood(σ2) known as σ̂2
MLE , then θ̂MLE = σ

3 =
√
σ̂2
MLE

3 . In other words, if
θ =

√
σ2

3 , then (3θ)2 = σ2. To find θ̂MLE without the invariance principle, we would have to maximize the
likelihood with respect to θ: arg maxθ L(θ). But we no longer have to do that computation because we can
utilize the relationship between θ and σ2, which will be the same relationship as θ̂MLE and σ̂2

MLE .
Example 8. Suppose X1, . . . , Xn

iid∼ Poisson(λ), where λ is unknown. Because Xi is from a Poisson
distribution, the support of Xi is just the natural numbers (i.e., 0, 1, 2, 3„. . . ,) and the support of λ > 0.
Find λ̂MLE .

First, we need to find the likelihood of this model:

Likelihood(λ) = P(x1, . . . , xn|λ)

= P(x1|λ)∗, . . . , ∗P(xn|λ)

=
n∏
i=1

P(xi|λ)

=
n∏
i=1

e−λλxi

xi!

= e−
∑n

i=1
λλ
∑n

i=1
xi∏n

i=1 xi!

= e−nλλ
∑n

i=1
xi∏n

i=1 xi!
.
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To make the computation simpler, it makes sense to find the log likelihood:

lnL(λ) = ln
[
e−
∑n

i=1
λλ
∑n

i=1
xi∏n

i=1 xi!

]

= ln
[
e−nλλ

∑n

i=1
xi
]
− ln

n∏
i=1

xi!

= ln
[
e−nλλ

∑n

i=1
xi
]
− ln

n∏
i=1

xi!

= ln
[
e−nλ

]
+ ln

[
λ
∑n

i=1
xi
]
− ln

n∏
i=1

xi!

= −nλ+
n∑
i=1

xi ln(λ)−
n∑
i=1

ln(xi!)

= −nλ+ ln(λ)
n∑
i=1

xi −
n∑
i=1

ln(xi!).

Now, we can find the critical points of the log likelihood by taking the first derivative:

d

dλ
l(λ) = d

dλ

[
−nλ+ log(λ)

n∑
i=1

xi −
n∑
i=1

log(xi!)
]

= d

dλ

[
−nλ+ d

dλ
log(λ)

n∑
i=1

xi −
d

dλ

n∑
i=1

log(xi!)
]

= −n d

dλ
λ+

n∑
i=1

xi
d

dλ
log(λ)− d

dλ

n∑
i=1

log(xi!)

= −n(1) +
n∑
i=1

xi
1
λ
− 0,

because d
dλλ = 1, d

dλ log(λ) = 1
λ , and the derivative with respect to λ of a term without λ is 0. Now, by

setting the derivative equal to 0, we can find the critical points:

0 = d

dλ
l(λ) = −n+

n∑
i=1

xi
1
λ
, ⇐⇒ n =

n∑
i=1

xi
1
λ

⇐⇒ nλ =
n∑
i=1

xi

⇐⇒ λ∗ =
∑n
i=1 xi
n

.

which implies that λ∗ =
∑n

i=1
xi

n , where λ∗ is our proposed estimate. Now, we have to check if λ∗ is a
minimum or a maximum by finding the second derivative, which is just −

∑n
i=1 xi

1
λ2 . \end{align*}

Since λ ≥ 0 and xi ≥ 0 always, the second derivative must be less than 0. So, that means λ∗ is a maximum.
So, λ̂MLE = λ∗ =

∑n

i=1
xi

n . If we were interested in the maximum of the likelihood, then we simply find
L(λ̂MLE).

We will now explore a very famous application of maximum likelihood, known as the “German Tank Problem.”
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In World War II, the Allied forces were destroying German and Italian tank. Each one that was destroyed
had a serial number, and each serial number was sequential. A problem of key consideration was estimating
how many tanks the German and Italians had. While this is an historic example, there are many current
situations that this solution is still applicable to. For example, in finance, oftentimes traders assume they
know log returns (a measure used to decide which stocks to buy or sell) are uniformly distributed. If one
were to find the maximum negative log return (maximum loss), then this approach that will be laid out in
this example will be of key importance.
Example 9. Assume X1...Xn

iid∼ Uniform[0, θ], where θ is an unknown constant. Assume x1...xn are
observed. Let us find θ̂MLE .

First, let us create the 2x2 table for this situation:

Observed Unobserved
Variable x1...xn NA
Constant NA θ

Because we are estimating with no latent variables and we want to ensure that our estimate is within its
parameter space, maximum likelihood estimation is a perfect strategy for this problem. To reiterate, maximum
likelihood estimation allows us to find the value of θ̂ that maximizes the chances (likelihood) of the observed
data being seen, given some assumptions about the model’s distributions.

For maximum likelihood estimation, we need to find the likelihood. Since we have no latent random
variables, we can directly find the proper likelihood: L(θ) = P(X1 = x1, . . . , Xn = xn|θ). Since X1, . . . , Xn

iid∼
Uniform[0, θ], the probability density function for the observed data is 1

θ . So,

L(θ) = P(X1 = x1, . . . , Xn = xn|θ)

=
n∏
i=1

1
θ
1[0,θ](xi)

which is essentially saying that the probability of the observed data occurring given some θ is just 1
θ , as long

as any observed data is not greater than θ. However, having this xi ∈ [0, θ] term is a little cumbersome,
which is why we use the indicator function, which is essentially a shorthanded form of a piece wise function.
If the condition is met, then it returns 1, and it returns 0 if the condition is not met. In this example, we
want 0 ≤ xi ≤ θ, so we will the indicator function would work as follows:

1[0,θ](xi) =

1 if 0 ≤ xi ≤ θ

0 otherwise

If we refer back to the uniform distribution, θ represents the upper bound for the data, so if there exists
some observed data point xi that is greater than θ, then θ is no longer an upper bound. Since we take the
product of probability of each individual observation occurring given θ (i.e.,

n∏
i=1

1
θ ), if one of the observations

is greater than θ, the entire likelihood evaluates to 0. For example, suppose θ = 5 and some observation
xk = 10. Then, L(θ = 10|xk = 5) = 0.

Now, notice that the likelihood is a function of x1, . . . , xn since it is the input for 1[0,θ](xi). Because we want
to maximize the likelihood only with respect to θ, we need to find some way to “swap” [0, θ] and xi that is fair
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for all xi. So, for all xi, θ ≥ xi ≥ 0. Since xi belongs to a finite set of terms, we can find the maximum of all
of the xi: max(x1, . . . , xn). By definition of the maximum, for all xi, max(x1, . . . , xn) ≥ xi. So, that means
if θ ≥ max(x1, . . . , xn), then

∏n
i=1 1[0,θ](xi) = 1. So, we can rewrite this as 1[0,θ](max(x1, . . . , xn)) = 1,

which says that as long as the maximum is between 0 and θ, then θ is valid. Now, we still need to swap
the xi and θ. Instead of saying 0 ≤ max(x1, . . . , xn) ≤ θ, we can say that max(x1, . . . , xn) ≤ θ < ∞. So,
1[0,θ](max(x1, . . . , xn)) = 1 = 1[max(x1,...,xn),∞)(θ) = 1. So,

L(θ) = 1
θn
1[max(x1,...,xn),∞)(θ),

which is now truly a function of θ.

Now that we have a likelihood expressed in terms of θ, we can find θ̂MLE . Let ε and a be some numbers
greater than 0. Intuitively, we know that when a < a+ ε, so that means 1

a >
1
a+ε . So, now, replacing that

with θn, as θn increases, 1
θn decreases. So, the θ̂ that maximizes the likelihood will be the θ̂MLE that is less

than all other possible θ̂s. Since we have the restriction that θ ≥ max(x1, . . . , xn), it is quite easy to see that
the smallest θ̂ can be is max(x1, . . . , xn), so θ̂MLE = max(x1, . . . , xn).

Analytically, we can take the derivative of the likelihood and find θ̂MLE :

∂L
∂θ

= −n
(

1
θn−1

)
,

which is less than 0 for all θ, suggesting a decreasing function. So the minimum θ maximizes the likelihood.
Thus, θ̂MLE = max(x1, . . . , xn).

1.2.3 Sufficient Statistics

First, recall that a statistic is any function of the data that is not a function of unknown constants/parameters.
A sufficient statistic is any statistic of the data that captures all of the relevant/necessary information for
estimating the model’s unknown parameters.

Definition 1.2: Sufficient statistic

Suppose we have a probabilistic model with unknown parameters θ and observed data x1, . . . , xn. A
statistic T = r(X1, . . . , Xn) is sufficient if

P(X1 = x1, . . . , Xn = xn|T = t, θ) = P(X1 = x1, . . . , Xn = xn|T = t),

for all t.

Example 10. Let us look at sufficient statistics in action. Suppose Xi represents the number of words in
document i. Assume Xi

iid∼ Poisson(λ) where λ > 0. Suppose x1, . . . , xn are observed and λ is an unknown
constant. Let us find λ̂MLE .

Since X1, . . . , Xn have a theoretical distribution and λ is unknown without a theoretical distribution (note,
λ > 0 is not a distribution), the 2x2 looks as follows:
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Observed Unobserved
Variable X1, . . . , Xn NA
Constant NA λ

So, the likelihood is only a function of λ and the proper likelihood can be found directly:

L(λ) = e−nλλ
∑n

i=1
xi∏n

i=1 xi!
.

Because we would like to maximize the likelihood, we can instead maximize the log of the likelihood which
will most likely be easier to take the derivative of:

l = lnL(λ)

= −nλ+
n∑
i=1

xi ln(λ)−
n∑
i=1

ln(xi!).

To find λ̂, we take the derivative of the log likelihood with respect to λ:

0 = ∂l

∂λ
= ∂

∂λ

[
−nλ+

n∑
i=1

xi ln(λ)−
n∑
i=1

ln(xi!)
]

= −n ∂

∂λ
λ+

n∑
i=1

xi
∂

∂λ
ln(λ)− ∂

∂λ

n∑
i=1

ln(xi!)

= −n+
n∑
i=1

xi
λ

+ 0.

Notice, the derivative of the term
n∑
i=1

ln(xi!), so it adds no value to estimating λ via MLE.

Then, the maximum likelihood estimator can be found from the non-zero terms of the first derivative, which
in this case is

−n+
n∑
i=1

xi
λ
.

Using this information, we can propose λ∗ =
∑n

i=1
xi

n as a potential MLE estimate. While we will not show
the calculations here, by

0 = ∂

∂λ
l(λ)

⇐⇒ 0 = 0− n+
∑n
i=1 xi
λ

⇐⇒ n =
∑n
i=1 xi
λ

⇐⇒ λ∗ =
∑n
i=1 xi
n

,

so (as long as the second derivative of the log likelihood is less than 0, suggesting that λ∗ is maximum),
λ̂MLE = λ∗. Because

∑n
i=1 xi is a function of the data and is the minimum set of information necessary to

compute the maximum likelihood, it is a sufficient statistic. \end{solution}
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In summary, to compute the maximum likelihood estimator for θ, an unknown constant, we follow these
steps:

• Get likelihood function: L(θ)

• Get log of the likelihood function: l(θ) = lnL(θ)

• Find the first derivative of the log likelihood: d
dθ l(θ) = 0, which proposes potential θ∗

• Find second derivative of the log likelihood and check that θ∗ is in fact a maximum: d2

dθ2 l < 0

• If d2

dθ2 l < 0, then θ̂MLE = θ∗.
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