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Statistical Learning

One of the most common applications of the probabilistic models we discussed is for prediction problems. In
the corporate world, companies may predict which subscribers will leave the program; in the health care
world, doctors may want to know the chances of someone having a specific disease given their diagnostic
data; in the social sciences, we may want to predict who the real author behind a speech is. We can solve all
of these problems using the probabilistic models we discussed. In fact, the act of developing a predictive
model that automatically understands data is known as statistical learning: the machine identifies patterns
in the observed data to allow us to predict unknowns. While there are many different flavors of statistical
learning, we will approach the field from a probabilistic and statistical perspective. Throughout this section,
we will establish likelihood functions for models commonly used in statistical learning, specifically in the
areas of supervised and unsupervised learning.

Definition 0.1: Statistical Learning

Statistical learning is the utilization of computational techniques and probabilistic modeling to
automatically understand data.

There are a few different subareas of statistical learning. In supervised learning, our goal is to predict some
outcome given other observations of that outcome; in other words, the quantity we want to predict is an
observed random variable that guides our study of covariation among our data. In unsupervised learning, our
goal is to infer the hidden structure of the data; in other words, the quantity we want to predict is a latent
variable, and there is no quantity to supervise our study of covariation in our data. And with semi-supervised
learning, we have an outcome of interest that is only partially-observed; so some outcomes are latent variables
while others are random variables.
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Supervised Learning

In the supervised learning framework, we generally have three steps:

1. find the likelihood given the model and data statements

2. estimate the model’s parameters/unknowns

3. we evaluate the model’s "performance"

Throughout this section, we will discuss steps 1 and 3 and introduce estimation strategies later since parts 1
and 3 go hand in hand: we must be able to recognize which of the models we propose in step one are most
representative of the true data generating process. Step 2 on the other hand is its own problem that we
can discuss separately. So, after introducing a few supervised learning methods – namely linear regression
and state space models – we discuss the topics of training/testing/validation splitting, cross-validation, and
evaluation metrics.

Linear Regression

Supervised learning is subset into two types of supervised learning: regression, in which the quantity we want
to predict is “continuous,” and classification, in which the quantity we want to predict is “discrete.” Both
continuous and discrete are in quotes because continuity in the framework of statistical learning is not the
same as continuity in the framework of mathematics. In a regression problem, the actual labels associated
with our data may in fact be discrete (i.e., take on a limited number of values), but the actual predictions
need not be discrete. For example, if we are predicting age, our observed data may simply be whole numbers
describing the number of years a person has lived. However, because we do not mind a real-valued prediction
(e.g., 21.5633), the problem is a regression problem. The distinction between discrete and continuous is up to
the modeler and requires care and precision that comes only from experience.

Let us define quantities X1, . . . , Xm–some of which may be random or constant–a single random variable Y ,
and a random variable ε. In a regression, we assume that the data generating process is some function that
combines X1, . . . , Xn and ε to yield Y . The following few examples are all possible regressions:

1. Y =
m∑
j=1

βjXj + ε for some constants β1, β2, . . . , βj

2. Y = β0 +
10∑
j=1

m∑
i=1

βijX
j
i

3. P(Y = 1) = 1

1+e

−

(
m∑
j=1

βjXj

) for some constants β1, . . . , βj assuming Y only has values 0 and 1.

One of the most common regression models is the linear regression model. In the linear regression model,
we assume there exists a linear relationship between input quantities (often referred to as “covariates” or
“features” or “independent variables”) and the output quantity (i.e., the quantity we want to predict, often
called the “target feature” or the “dependent variable”). Suppose we have m independent variables; we
generally denote these as X1, . . . , Xm and the dependent variable as Y . And we assume that we have N IID
observations. So, for each IID observation i, there is a set of characteristics that describe that observation,
denoted as Xi1, Xi2, . . . , Xim and the outcome for that observation Yi. In the linear regression set up, these
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are our only observed quantities. And in our 2x2 table, we also have to consider the variation/constancy of
our terms. Even though Xi1, . . . , Xim are referred to as dependent “variables,” they do not necessarily have
to have variation; they can be constants. However, we assume that in a linear regression framework, Y will
always be variable.

Recall that we said there exists a linear relationship between Yi and Xi1, . . . , Xim. This simply means that a
one unit increase in some independent variable Xj will lead to a βj unit increase in Y ; depending on the
situation, we may want to model βj may be a constant or a latent variable. So, because there is a linear
relationship between Yi and Xi1, . . . , Xim, we can write down this model as

Yi = β0 + β1Xi1 + β2Xi2 . . .+ βmXim.

Note that we call β0 the “constant,” and is akin to the y-intercept in a traditional linear equation (i.e., the b
term in y = mx+ b). When Xi1 = Xi2 = . . . = Xim = 0 (i.e., all our inputs are 0), it is not guaranteed that
the y-intercept is also 0. So, we use β0 as a placeholder for the value of Y when Xi1 = Xi2 = . . . = 0. Similar
to the other β terms, we can model β0 as a constant or variable, which we decide based on the situation.

The last component of the linear regression model is the “error” term, which is the source of variation in
our model. Recall that β0, . . . , βm, Xi1, . . . , Xim could all be constants, so let us assume this to be the case.
Then, since the sum of constants is constant, that would mean that β0 +β1Xi1 + . . .+βmXim is also constant.
However, we know that Y is a random variable. So, in order to represent the random variation in Yi, we
introduce the term εi = Yi − (β0 + β1Xi1 + . . .+ βmXim). And generally, rather than imposing a probability
distribution on Yi, we impose a distribution on εi. So, there exists a deterministic relationship between Yi
and εi; in other words, if we know Yi and all other quantities but εi, we can compute εi. Likewise, if we know
εi and all other quantities, we can compute Yi. And now, we can rewrite εi to have Yi on one side of the
equation and everything else on the other side to yield

Yi = β0 + β1Xi1 + β2Xi2 + . . .+ βmXim + εi.

Now, we can represent the linear regression formulation as a model statement and data statement:

for i = 1, . . . , n

Xi1, . . . , Xim ∼ P(X1, . . . , Xm) if we are modeling X1, . . . , Xm as variables

βm, . . . , βm ∼ P(β0, . . . , βj) if we are modeling β0, . . . , βm as variablesεi ∼ P(ε)

Yi|β0, . . . , β1, Xi1, . . . , Xim, εi = β0 + β1Xi1 + . . .+ βmXim + εi.

And recall that we only observe Yi and Xi1, . . . , Xim for all of our N IID observations. So our data table
would look as follows:

Using these quantities, we can there set up our 2x2 table and calculate the likelihoods. Let us consider a few
examples:
Example 1. Suppose we are given data on a person’s income, represented with Y , and age, denoted by X,
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Table 1: Linear Regression Data Statement

Obs# Y X1 X2 . . . Xm

1 y1 x11 x12 . . . x1m
2 y2 x21 x22 . . . x2m
...

...
...

...
...

...
N yN xN1 xN2 . . . xNm

for N individuals with the following probabilistic model:

for i = 1, . . . , n

εi ∼ Normal(0, σ2)

Yi|Xi, α, β, εi = α+ βXi + εi.

Let us find the 2x2 table and the likelihood for this model.

First, notice that we have data on a person’s income and their age. So, we only observe the realizations of the
random variables Y1, . . . , YN as y1, . . . , yn and the constants X1, . . . , XN . Even though Yi’s distribution is
not defined, because there exists a deterministic relationship between εi and Yi, we know that Yi is a random
variable. And since there is no deterministic relationship between Xi and another random variable and the
distribution of Xi is not explicitly defined, Xi must be a constant. Additionally, the values for σ2, α, β are all
not observed and do not have probability distributions imposed. So they are unknown constants. Then, the
2x2 table would look as follows:

Observed Unobserved
Variable y1, . . . , yN

Constant X1, . . . , XN α, β, σ2

And now we can calculate the likelihood. Since we do not have any latent variables, our proper and complete
likelihoods are equivalent. So, the likelihood – which represents the probability of our random variables being
their realizations given the model’s constants – is then

P(Y1 = y1, . . . , YN = yN |α, β, σ2, X1, . . . , XN ).

Since Y1, . . . , YN are IID random variables, their joint distribution is the product of their marginal distributions.
So,

Likelihood = P(Y1 = y1, . . . , YN = yN |α, β, σ2, X1, . . . , XN )

= P(Y1 = y1|α, β, σ2, X1, . . . , XN ) . . .P(YN = yN |α, β, σ2, X1, . . . , XN )

=
N∏
i=1

P(Yi = yi|α, β, σ2, X1, . . . , XN ).

However, here we may run into a problem: we never explicitly defined the distribution of Yi. Instead,
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we can write εi = yi − α − βXi ∼ Normal(0, σ2). Since Yi and εi are deterministically related, P(Yi =
yi|α, β, σ2, X1, . . . , XN ) = P(εi = yi − α− βXi|α, β, σ2, X1, . . . , XN ). So,

Likelihood = P(Y1 = y1, . . . , YN = yN |α, β, σ2, X1, . . . , XN )

= P(Y1 = y1|α, β, σ2, X1, . . . , XN ) . . .P(YN = yN |α, β, σ2, X1, . . . , XN )

=
N∏
i=1

P(Yi = yi|α, β, σ2, X1, . . . , XN )

=
N∏
i=1

P(εi = yi − α− βXi|α, β, σ2, X1, . . . , XN )

=
N∏
i=1

1√
2πσ2

e
−1
2σ2 (yi−α−βXi)

As we discussed earlier, models are simplified representations of some real world process. In Example 1, we
assume that age is the only variable that can explain variation in income, but we know many other features
may be involved in deciding someone’s income, such as education, industry, experience, and location. Let us
now consider a linear regression example with multiple variables now.
Example 2. Suppose we are given the following data for person each person i: income (Yi), age (Xi,age),
education (Xi,edu), industry (Xi,ind), years of experience (Xi,exp), and location (Xi,loc). For notational
simplicity, let

∑
βjXi,j represent βeduXi,edu + βindXi,ind + βexpXi,exp. Now, suppose we have the following

data generating process:

for i = 1, . . . , n

Xi,age ∼ Normal(µ, σ2)

εi ∼ Normal(0, γ2)

Yi|Xi,age, Xi,edu, Xi,ind, Xi,exp, Xi,loc, β0, βage, βedu, βind, βexp, βloc, εi = β0 + βageXi,age +
∑

βjXi,j + εi.

Notice, this model statement is very similar to that in Example 1, but with a few differences: obviously, we
have more quantities of interest. But additionally, the variable for age now is normally distributed, so it is an
observed variable rather than a constant in our 2x2 table. Additionally, because we do not assume that any
of the other terms come from a distribution, we can classify all other terms as constants.

In order to find the likelihood, let us write out our 2x2 table:

Observed Unobserved
Variable y1, . . . , yN , X1,age, . . . , XN,age

Constant X1,edu, . . . , XN,edu, X1,ind, . . . , XN,ind, X1,exp, . . . , XN,exp β0, βage, βedu, βind, βexp, µ, σ
2, γ2

First, we know the likelihood is the proper probability of observing the given data given the model’s constants:

Likelihood = P(Y1 = y1, . . . , YN = yN , X1,age = x1,age, . . . , XN,age = xN,age|βage,
∑

βjX1,j , . . . ,
∑

βjXN,j , µ, σ
2, γ2).

Now, because each of our N observations are IID, we can rewrite the likelihood of N observations as the
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product of the likelihoods of each observation:

Likelihood = P(Y1 = y1, . . . , YN = yN , X1,age = x1,age, . . . , XN,age = xN,age|βage,
∑

βjX1,j , . . . ,
∑

βjXN,j , µ, σ
2, γ2)

= P(Y1 = y1, X1,age = x1,age|βage,
∑

βjX1,j , µ, σ
2, γ2) . . .P(YN = yN , XN,age = xN,age|βage,

∑
βjXN,j , µ, σ

2, γ2)

=
N∏
i=1

P(Yi = yi, Xi,age = xi,age|βage,
∑

βjXi,j , µ, σ
2, γ2).

Now, by Bayes rule, we can rewrite P(Yi = yi, Xi,age = xi,age) as P(Yi = yi|Xi,age = xi,age)P(Xi,age = xi,age).
So,

Likelihood = P(Y1 = y1, . . . , YN = yN , X1,age = x1,age, . . . , XN,age = xN,age|βage,
∑

βjX1,j , . . . ,
∑

βjXN,j , µ, σ
2, γ2)

= P(Y1 = y1, X1,age = x1,age|βage,
∑

βjX1,j , µ, σ
2, γ2) . . .P(YN = yN , XN,age = xN,age|βage,

∑
βjXN,j , µ, σ

2, γ2)

=
N∏
i=1

P(Yi = yi, Xi,age = xi,age|βage,
∑

βjXi,j , µ, σ
2, γ2)

=
N∏
i=1

P(Yi = yi|βage, Xi,age = xi,age,
∑

βjXi,j , γ
2)P(Xi,age = xi,age|µ, σ2).

Since εi and Yi are deterministically related, the Transformation Theorem tells us the distribution of
Yi ∼ Normal(β0 + βageµ+

∑
βjXi,j + εi, γ

2). So,

Likelihood = P(Y1 = y1, . . . , YN = yN , X1,age = x1,age, . . . , XN,age = xN,age|βage,
∑

βjX1,j , . . . ,
∑

βjXN,j , µ, σ
2, γ2)

= P(Y1 = y1, X1,age = x1,age|βage,
∑

βjX1,j , µ, σ
2, γ2) . . .P(YN = yN , XN,age = xN,age|βage,

∑
βjXN,j , µ, σ

2, γ2)

=
N∏
i=1

P(Yi = yi, Xi,age = xi,age|βage,
∑

βjXi,j , µ, σ
2, γ2)

=
N∏
i=1

P(Yi = yi|βage, Xi,age = xi,age,
∑

βjXi,j , γ
2)P(Xi,age = xi,age|µ, σ2)

=
N∏
i=1

P(Yi = β0 + βageXi,age +
∑

βjXi,j + εi|βage, Xi,age = xi,age,
∑

βjXi,j , γ
2)P(Xi,age = xi,age|µ, σ2)

=
N∏
i=1

Normal(Yi|β0 + βageµ+
∑

βjXi,j + εi, γ
2)Normal(Xi,age = xi,age|µ, σ2).

In Example 2, we discussed how to derive the likelihood of a linear regression model with multiple independent
variables because income is likely a factor of several variables. But many times it is very difficult to account
for all the possible features in the true data generating process, and our model will therefore have some
omitted variables. In other words, there exist quantities that we did not include in our model that may
explain variation in our dependent variable. When we assume the omitted quantities are constants and we
include a term in our regression for them, we refer to the model as a fixed effects linear regression model.
And when we assume the omitted quantities are variable, we refer to the model as a random effects linear
regression model. Let us consider an example of a random effects model.
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Definition 0.2: Fixed Effects Linear Regression
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Let Yi be our dependent variable for observation i with m independent variables Xi,1, . . . , Xi,m. Our
model is known as a fixed effects linear regression if it has the following form:

for i = 1, . . . , n

εi ∼ Normal(µ, σ2)

for j = 1, . . . ,m

Xi,j ∼ P(Xi,j |θ) (if Xi,j is variable)

Yi|β0, β1, . . . , βj , θ,Xi,1, . . . , Xi,m = β0 +
m∑
j=1

βjXi,j + εi + αi.

Here, αi represents all the constant variation in Yi uncaptured by the traditional linear regression model
for individual i.

Definition 0.3: Random Effects Linear Regression

Let Yi be our dependent variable for observation i with m independent variables Xi,1, . . . , Xi,m. Our
model is known as a random effects linear regression if it has the following form:

for i = 1, . . . , n

εi ∼ Normal(µ, σ2)

for j = 1, . . . ,m

Xi,j ∼ P(Xi,j |θ) (if Xi,j is variable)

αi ∼ P(α)

Yi|β0, β1, . . . , βj , θ,Xi,1, . . . , Xi,m = β0 +
m∑
j=1

βjXi,j + εi + αi.

Here, αi represents all the variation in Yi uncaptured by the traditional linear regression model for
individual i.

Example 3. Suppose we administer a survey to 100 people asking about their incomes and ages, denoted as
Yi and Xi respectively for individual i. Suppose respondents 1 to 97 answered all questions, persons 98 and
99 only reported age, and person 100 reported only age but not income. In other words, our data set would
read as follows:

We also assume that the true data generating process is

for i = 1, . . . , 100

εi ∼ Normal(0, σ2)

Xi ∼ Normal(µ, γ2)

Yi|εi, Xi = β0 + β1Xi + εi.

Because Xi and Yi come from probability distributions, Xi and Yi are random variables. So, X1, . . . , X100

and Y1, . . . , Y100 are random variables. However, because X98, X98, Y100 are missing from the dataset, these
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Table 2: Missing Survey Data Statement

Obs# Y X

1 y1 x1
2 y2 x2
...

...
...

97 y97 x97
98 y98 ?
99 y99 ?
100 ? x100

are latent variables. Because we have these latent variables that explain variation in our model, this is akin
to the random effects linear regression we just introduced.

So, our 2x2 table would read as follows:

Observed Unobserved
Variable X1, . . . , X97, X100, Y1, . . . , Y99 X98, X99, Y100

Constant β0, β1, σ
2, µ, γ2

As usual, from the 2x2 table, we want to derive the proper likelihood, which is the probability of our observed
variables given our constant terms:

Likelihood = P(X1 = x1, . . . , X97 = x97, X100 = x100, Y1 = y1, . . . , Y99 = y99|β0, β1, σ
2, µ, γ2).

Notice, in the proper likelihood, the latent variables do not exist. But we need the information from those
quantities to capture the entire model’s process. We can do this by taking advantage of marginalizing
distributions (i.e., P(A) =

∫
B
P(A,B)dB for some random variables A and B). So,

Likelihood = P(X1 = x1, . . . , X97 = x97, Y1 = y1, . . . , Y99 = y99|β0, β1, σ
2, µ, γ2)

=
∫
X98

∫
X99

∫
Y100

P(X1 = x1, . . . , X100 = x100, Y1 = y1, . . . , Y100 = y100|β0, β1, σ
2, µ, γ2)dX98dX99dY100.

Now, we can take advantage of the independence of these values and write out the joint likelihood as the
product of individual likelihoods:

Likelihood = P(X1 = x1, . . . , X97 = x97, Y1 = y1, . . . , Y99 = y99|β0, β1, σ
2, µ, γ2)

=
∫
X98

∫
X99

∫
Y100

P(X1 = x1, . . . , X100 = x100, Y1 = y1, . . . , Y100 = y100|β0, β1, σ
2, µ, γ2)dX98dX99dY100

=
∫
X98

∫
X99

∫
Y100

100∏
i=1

P(Xi = xi, Yi = yi|β0, β1, σ
2, µ, γ2)dX98dX99dY100.
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And now, by Bayes’ Rule we can rewrite the joint probability of Xi and Yi as

Likelihood = P(X1 = x1, . . . , X97 = x97, Y1 = y1, . . . , Y99 = y99|β0, β1, σ
2, µ, γ2)

=
∫
X98

∫
X99

∫
Y100

P(X1 = x1, . . . , X100 = x100, Y1 = y1, . . . , Y100 = y100|β0, β1, σ
2, µ, γ2)dX98dX99dY100

=
∫
X98

∫
X99

∫
Y100

100∏
i=1

P(Xi = xi, Yi = yi|β0, β1, σ
2, µ, γ2)dX98dX99dY100

=
∫
X98

∫
X99

∫
Y100

100∏
i=1

P(Yi = yi|Xi = xi, β0, β1, σ
2)P(Xi = xi|µ, γ2)dX98dX99dY100.

Since Yi is a linear combination of two normally distributed random variables (εi and Xi), Yi ∼ Normal(β0 +
β1µ, σ

2). So, we can rewrite the likelihood as

Likelihood = P(X1 = x1, . . . , X97 = x97, Y1 = y1, . . . , Y99 = y99|β0, β1, σ
2, µ, γ2)

=
∫
X98

∫
X99

∫
Y100

P(X1 = x1, . . . , X100 = x100, Y1 = y1, . . . , Y100 = y100|β0, β1, σ
2, µ, γ2)dX98dX99dY100

=
∫
X98

∫
X99

∫
Y100

100∏
i=1

P(Xi = xi, Yi = yi|β0, β1, σ
2, µ, γ2)dX98dX99dY100

=
∫
X98

∫
X99

∫
Y100

100∏
i=1

P(Yi = yi|Xi = xi, β0, β1, σ
2)P(Xi = xi|µ, γ2)dX98dX99dY100

=
∫
X98

∫
X99

∫
Y100

100∏
i=1

Normal(β0 + β1xi, σ
2|Xi = xi)Normal(Xi = xi|µ, γ2)dX98dX99dY100.

Unsupervised Learning

In supervised learning, we observe the outcome that we are aiming to predict. However, there are many use
cases in which the outcome of interest is in fact a latent variable. For instance, suppose we run a business
and want to find customers who are similar to each other to recommend content; customer similarity is
unobserved but random, so the quantity we want to predict is latent. Or, if we are analyzing tweets in specific
communities, we may want to know what topics people are interested in and how that changes over time;
because the topics are unobserved, they are latent variables. We will consider two unsupervised learning
models – one for understanding the interconnectedness of people and another for discovering topics in text
data.

Latent Space Models with Network Data

Latent space models are a class of models that allow us to identify the position of different units in an
unobserved space by taking advantage of network data. Because the goal of the model is to estimate the
latent positions of our units, which are unobserved quantities, these are all unsupervised learning models.
The basic intuition relies on the idea that the closer two units are in the latent space, the more likely they are
to be connected in a network. By understanding the latent space of the units in our population, we can then
identify similar customers in a business for prduct recommendation, or we can identify which communities in
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a network are related, or understand the connectivity patterns in brain networks.

The model assumes that we have N individuals and an adjacency matrix Y such that the entry in row i

and column j, Yi,j is 1 if individuals i and j are connected and 0 otherwise. Additionally, for each pair of
units i and j, we have observed characteristics about their shared relationship X1

i,j , X
2
i,j , . . . , X

m
i,j and their

unobserved latent spaces Zi and Zj . Then, the log-odds of individual i and j having an edge between them
is given by

ηi,j = logoddsP(Yi,j = 1|X1
i,j , . . . , X

m
i,j , Zi, Zj) = α+

m∑
k=1

βkX
m
i,j + |Zi − Zj |.

So, the general data-generating process for this model can be written as follows:

# Sample latent space of each unit i for i = 1, . . . , N do
Zi ∼ fZ(Z)

end
for i = 1,. . . ,N do

for j = 1,. . . , N do
for k = 1, . . . , N do

# Sample shared covariates if they follow a probability distribution Xk
i,j ∼ fXk(Xk)

end

ηi,j = logoddsP(Yi,j = 1|X1
i,j , . . . , X

m
i,j , Zi, Zj) = α+

m∑
k=1

βkX
m
i,j + |Zi − Zj |

end
end

Algorithm 1: General Latent Space Modeling DGP

The reason we use log-odds rather than the raw probability is that the log-odds have a co-domain between
−∞ and ∞ while the raw probability has a codomain between 0 and 1. Notice, the right hand side is very
similar to the form of a regression: α is akin to the “y-intercept” in the linear regression and β1, . . . , βl are
the coefficients for each of our covariates. However, α is now the y-intercept for the log-odds and β1, . . . , βl

are coefficients for our relationship-level covariates. In addition to these differences, we now also include a
term for the distance between user i and user j.

In this model, we make no restrictions on whether X1
i,j , . . . , X

l
i,j are observed; it may even be the case that

some features are observed while others are latent. And furthermore, we make no restriction on whether
X1
i,j , . . . , X

l
i,j are random or constant. As such, the model can be very flexible.

Notice that in the general model, ηi,j does not have to necessarily be the same as ηj,i; in other words, the
chances of individual i having a connection to individual j is not the same as individual j having a connection
to individual i. This may be as a result of Xk. Suppose Xk

i,j represents the number of messages on a school’s
messaging board that individual i messaged individual j; in this case, Xk

i,j 6= Xk
j,i, so then βkXk

i,j 6= βkX
k
j,i;

thus, ηi,j 6= ηj,i. If ηi,j 6= ηj,i, then our resulting network structure would be a directed network, which means
that person i could be related to person j but person j does not have to be related to person i. For example,
if we consider a friendship network, student i may think that they are friends with student j but student j
does not have to reciprocate that relationship.

Additionally, there are many quantities involved and therefore many different possible conceptualizations
possible. For example, there are the case when X1

i,j , . . . ,Xl
i,j are constant or when they are variable or there

are some pairwise covariates that are random while others are constant. We also have the cases in which
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Zi,1, . . . ,Zi,m are constant or when they are variable or when some individual-level covariates are random
while others are constant. We also have the cases in which α, β1, . . . , βl are variable or constant or a mix
of the two. The actual 2x2 and likelihood will therefore be very case-dependent. So let us consider a few
examples.
Example 4. Suppose we have twenty students in a classroom and want to understand how similar they are
to each other to craft our lesson plans; if students are very similar, then we can have a general teaching plan,
but if students are very different, then we should have group assignments so that similar students can learn
from one another.

We will model this problem as a latent space model and assume the following data generating process:

for i = 1, . . . , 20 do
for j = i+ 1, . . . , 20 do(

ηi,j
1−ηi,j

)
= α+ β|xi − xj |

yi,j |ηi,j = yj,i|ηj,i = Bernoulli(ηi,j)
end

end
Algorithm 2: Latent Space Model DGP: Example 4

Recall from the general latent space model, ηi,j represents the probability of an edge existing between units
i and j, and the actual existence of an edge going from i to j is given by Yi,j . Similarly, in this example,
we have ηi,j and Yi,j representing the probability and existence of an edge going from i to j respectively;
however, we also assume that Yi,j = Yj,i, which means that an edge extends from i to j if and only if an edge
extends from j to i. In common language, we assume people who sit closer to each other are more likely to
be friends with each other and reciprocate that friendship. Also, because Yi,j = Yj,i, including both sets of
data in our problem is redundant. Instead, we will only look at the Yi,j for which i < j. If we represented
this data as a matrix, we would only be looking at the upper triangle, as seen in blue in Table 3.

Table 3: Adjacency Matrix: Example 4

1 2 3 . . . 19 20
1 0 y1,2 y1,3 . . . y1,19 y1,20
2 y2,1 0 y2,3 . . . y2,19 y2,20
3 y3,1 y3,2 0 . . . y3,19 y3,20
...

...
...

...
. . .

...
19 y19,1 y19,2 y19,3 . . . 0 y19,20
20 y20,1 y20,2 y20,3 . . . y20,19 0

Now, we can write the 2x2 table for this model.

Because ηi,j for all units i and j are not explicitly from a distribution and none of its inputs (i.e.,
α, xi, xj) follow a distribution ηi,j is a constant. And because Yi,j follows a Bernoulli distribu-
tion, Yi,j is a random variable. We are only given Yi,j and no other data. So, our unknowns are
α, β, η1,2, η1,3, . . . , η1,20, η2,3, η2,4, . . . , η2,20, . . . , η19,20 – all of which are constants. So, our 2x2 table would
look as follows:
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Observed Unobserved
Variable Y1,2, Y1,3, . . . , Y1,20, Y2,3, Y2,4, . . . , Y2,20, . . . , Y19,20

Constant α, η1,2, η1,3, . . . , η1,20, η2,3, η2,4, . . . , η2,20, . . . , η19,20, β

Recognize that we do not include xi, xj in our 2x2 table: this is because ηi,j and xi, xj are deterministically
related so if we know ηi,j , we can reconstruct xi, xj . And similarly, if we know xi, xj , we can reconstruct ηi,j .

Then, our likelihood would be

Likelihood = P(Y1,2 = y1,2, . . . , Y1,20 = y1,20, Y2,3 = y2,3, . . . , Y2,20 = y2,20, . . . , Y19,20 = y19,20|α, β, η1,2, . . . , η19,20).

Recall that one of the core assumptions of the latent space models is that the existence of an edge between
two individuals is independent from all other edges conditioned on the latent space and other constants. So,
we can then rewrite the joint likelihood of edges existing as the product of individual likelihoods of edges
existing:

Likelihood = P(Y1,2 = y1,2, . . . , Y1,20 = y1,20, Y2,3 = y2,3, . . . , Y2,20 = y2,20, . . . , Y19,20 = y19,20|α, β, η1,2, . . . , η19,20)

=
∏

1≤i<j≤20
P(Yi,j = yi,j |α, β, ηi,j).

Because Yi,j follows a Bernoulli distribution with success probability ηi,j ,

P(Yi,j = yi,j |α, β, ηi,j) = [P(Yi,j = 1|α, β, ηi,j)]yi,j [P(Yi,j = 0|α, β, ηi,j)]1−yi,j .

Additionally, because P(Yi,j = 1) = ηi,j , we can further simplify P(Yi,j) to

P(Yi,j = yi,j |α, β, ηi,j) = [ηi,j ]yi,j [1− ηi,j ]1−yi,j .

Example 5. Now, let us consider an example in which ηi,j actually follows a probability distribution.
Suppose we have the same DGP as before, except xi,

iid∼ Normal(0, σ2):

for i = 1, . . . , 20 do
Xi ∼ Normal(µ, σ2)

end
for i = 1, . . . , 20 do

for j = i+ 1, . . . , 20 do
ηi,j = log

P(Yi,j=1|α,β,Xi,Xj)
P(Yi,j=0|α,β,Xi,Xj) = α+ β|Xi −Xj |

end
end

Algorithm 3: Latent Space Model DGP: Example 5

Notice, we rewrote the same likelihood but simply with a different form. Here, we explicitly write out what
ηi,j represents: the log-odds of Yi,j being connected. That means that the success probability of Yi,j being 1
would be given by 1

1+eα+β|Xi−Xj |
. Let us find the likelihood of this new problem.
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Similar to Example 4, we assume the only data we are given is the adjacency matrix; and because we assume
Yi,j = Yj,i, we only need data on Yi,j when 1 ≤ i < j ≤ 20. So, our 2x2 table would be the following:

\begin{var_table}{Y1,2, Y1,3, . . . , Y1,20, Y2,3, Y2,4, . . . , Y2,20, . . . , Y19,20}{}{X1, . . . , X20}{α, β, µ, σ2}

Again, because ηi,j and Xi, Xj are deterministically related, we only need to use one or the other in our 2x2
table. In this example, we will now use X1, . . . , X20 instead for our calculations. Then, the proper likelihood
is given by:

Likelihood = P(Y1,2 = y1,2, . . . , Y19,20 = y19,20|α, β, µ, σ2).

However, because we now have latent variables, we need to consider X1, . . . , X20 as well: to do this, we
must recognize the proper likelihood is the marginal of the complete likelihood. So, we can integrate out
X1, . . . , X20 from the joint complete likelihood and obtain the proper likelihood:

Likelihood =
∫
X1

. . .

∫
X20

P(Y1,2 = y1,2, . . . , Y19,20 = y19,20, X1 = x1, . . . , X20 = x20|α, β, µ, σ2)dx1 . . . dx20.

Now, we can take advatange of Bayes’ Rule and rewrite the likelihood as

Likelihood =
∫
X1

. . .

∫
X20

P(Y1,2 = y1,2, . . . , Y19,20 = y19,20|X1 = x1, . . . , X20 = x20, α, β)P(X1 = x1, . . . , X20 = x20|µ, σ2)dx1 . . . dx20.

Recall the conditional independence assumption of the latent space model. So, that means that we can
further simplify the joint complete likelihood to be the product of individual complete likelihoods:

Likelihood =
∫
X1

. . .

∫
X20

∏
1≤i<j≤20

P(Yi,j = yi,j |Xi = xi, Xj = xj , α, β)P(Xi = xi, Xj = xj |µ, σ2)dx1 . . . dx20.

But since Xi
iid∼ Normal(µ, σ2), P(Xi = xi, Xj = xj |µ, σ2) = P(Xi = xi|µ, σ2)P(Xj = xj |µ, σ2). So,

Likelihood =
∫
X1

. . .

∫
X20

∏
1≤i<j≤20

P(Yi,j = yi,j |Xi = xi, Xj = xj , α, β)P(Xi = xi|µ, σ2)P(Xj = xj |µ, σ2)dx1 . . . dx20

=
∫
X1

. . .

∫
X20

∏
1≤i<j≤20

Bernoulli(Yi,j = yi,j |Xi = xi, Xj = xj , α, β)Normal(Xi = xi|µ, σ2)Normal(Xj = xj |µ, σ2)dx1 . . . dx20.

Let us break this into more tractable pieces. Since Yi,j follows a Bernoulli distribution with success
1

1+eα+β|Xi−Xj |
,

P(Yi,j = yi,j |α, β,Xi = xi, Xj = xj) =
[

1
1 + eα+β|Xi−Xj |

]yi,j [ eα+β|Xi−Xj |

1 + eα+β|Xi−Xj |

]1−yi,j

.
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Now, since Xi, Xj ∼ Normal(µ, σ2),

fX(xi|µ, σ2) = 1√
2πσ2

e
−1
2 ( xi−µσ )2

.

So,
fX(xi|µ, σ2)fX(xj |µ, σ2) = 1√

2πσ2
e
−1
2 ( xi−µσ )2 1√

2πσ2
e
−1
2 ( xi−µσ )2

,

which we can then simplify to

1
2πσ2 e

−1
2σ2 ((xi−µ)2+(xj−µ)2).

So, putting all the pieces together,

Likelihood = P(Y1,2 = y1,2, . . . , Y19,20 = y19,20|α, β, µ, σ2)

=
∫
X1

. . .

∫
X20

∏
1≤i<j≤20

[
1

1 + eα+β|Xi−Xj |

]yi,j [ eα+β|Xi−Xj |

1 + eα+β|Xi−Xj |

]1−yi,j 1
2πσ2 e

−1
2σ2 ((xi−µ)2+(xj−µ)2)dx1 . . . dx20.
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