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Probabilistic Modeling

Data science is an interdisciplinary field that is incredibly collaborative. Given the great heterogeneity
between disciplines, many times “modeling” in one field is different than “modeling” in another, so we must
translate this into the language that data scientists, statisticians, and machine learners use: probabilistic
models. Using, this information, we can construct the data science pipeline.

Definition 0.1: Scientific and Probabilistic Models

A scientific model is a physical, conceptual, or mathematical representation of a real world system,
process, or event.

As compared to scientific models, probabilistic models specifically deal with the study of how data
was generated, taking advantage of randomness and variability through the assignment of probability
distributions to different quantities.

Most real world problems typically deal with estimating some quantity given a set of other quantities. After
gathering the data and positing a process by which the real data was produced, we calculate the likelihood
function; we then maximize the likelihood function to find unknown quantities. Using our guesses for the
unknown quantities, we then estimate our objective.

In general, variables are quantities that have a theoretical variation; that is, in our probabilistic model, these
values come from a probability distribution. On the other hand, constants are quantities that do not have
theoretical variation: they are fixed. We classify our quantities into four groups:

1. Known constants, values that are observed and have no theoretical variation

2. Unknown constants, values that are unobserved and have no theoretical variation

3. Latent/omitted variables, values that are unobserved and have no theoretical variation
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4. Observations/data/random variables, values that are observed and have theoretical variation

We often refer to the theoretical results as the model statement or the data generating process, which
describes the probabilistic process by which our data was generated and informs us on which quantities
are variables and constants. The empirical information is given through the problem/data statement and
describes what information is actually observed. Combining the information from both sources, we will
estimate our quantities.

Definition 0.2: Data Generating Process DGP

The data generating process (DGP) is an algorithmic representation of a probabilistic model.

It is important to note one factor of modeling: “all models are wrong but some are useful.” As a data scientist
or researcher, our responsibility is to evaluate the trade-offs between accurately representing the real world
and being able to infer information from our models. For instance, suppose we assume that the only quantity
that can impact income is age. Someone may criticize that model because it excludes other relevant features,
such as education. However, by including education in our model, we would increase the complexity of the
problem; if we do not have the time or tools to consider education in the model, then we are at a disadvantage
because we would not be able to infer anything. Throughout this book, our goal is to employ the readers
with the skills necessary to actually model real world processes and evaluate the trade-offs between accuracy
and complexity. Early on, we do not want to overwhelm ourselves, which is why we have incredibly simple
and potentially inaccurate representations of the real world early on in this book.

Empirical and Theoretical Distributions

In statistical modeling, there are two ideas: what we believe will happen – the theoretical – and what will
actually happen – the empirical. In the assumption/model statement phase of any situation, we must assume
whether a quantity has variability or not. While that sounds simple enough, there may be issues that arise.
Take the following example: we assume that a fair, six-sided die has a uniform distribution, so the theoretical
variation is greater than 0. However, suppose we roll only 1s, a completely possible outcome. Should we
classify this as a known constant or a known variable? The model statement will guide the researcher, not the
data itself. So because the theoretical variation is greater than zero, this is a known variable – the empirical
result has no impact on our modeling.

Consider the following two scenarios:

Let Xi be a random variable that represents the outcome of rolling a 6-sided die with 6 on all sides. That
means that xi = 6 with probability 1 (recall that the big letter means a random variable while the little letter
means the realization of the random variable). Because P(Xi = 6) = 1, Xi has no theoretical variation and is
a constant. When we look at the data (i.e., the empirical distribution) and our theoretical distribution (i.e.,
Xi = 6 with probability 1), we should see that the two align.

In another scenario, suppose we have a random variable Yi representing the outcome of rolling a 6-sided die with
1, 2, ..., 6 on its sides, so each outcome has probability 1

6 . Then, P(Yi = 1) = P(Yi = 2) = . . .P(Yi = 6) = 1
6 .

When we actually roll the die, it is possible that we roll only a sequence of 1s (i.e. y1 = 1, y2 = 1, . . .); or we
could roll another sample like y1 = 1, y2 = 2, y3 = 1, y4 = 6, . . ., in which there is empirical variation. The
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empirical and theoretical distributions do not necessarily have to be equivalent to one another.

The first example is a probabilistic representation of a constant: xi will always have the same outcome. On
the other hand, in the second situation, yi is not guaranteed to be the same outcome each time empirically.
The distinction between the empirical and theoretical variability comes from the sample outcome versus the
expected outcome.

So, we want to estimate something, given that only a subset of quantities and given some assumptions about
how those quantities relate. The problem and model statements will help us categorize our variables into the
following table:

Observed Unobserved
Variable
Constant

Example 1. Suppose we want to estimate some quantity, τ , which is a function of y1...yn, x1...xn, θ, where
each i is a user and y1...yn is a series of expenditures that each i has made, xi is a bunch of covariates for
each user i (i.e., age, gender, race, etc), and θ is a set of scalar quantities for the model. Our goal is to now
estimate θ given y1...yn, x1...xn.

First, we know θ is unknown. We must ask another question: “is θ an unknown constant or an unknown
variable?” This information comes from the model statement.

Suppose our probabilistic model reads as follows:

for i = 1, . . . , n : yi = θxi

So, if given an age bracket (xi), then yi–the amount that user i will spend–is just some scalar multiple of their
age bracket. In this model, there is no variability because we did not make any assumptions about variables
having a distribution. Because we never explicitly stated which distribution θ comes from, we classify θ as a
constant. The 2x2 table for this problem reads as follows:

Observed Unobserved
Variable NA NA
Constant x1...xn, y1...yn θ

Now, let us try a new example with the same problem setting but that will lead to a different two-by-two
table.
Example 2. Suppose we want to estimate some quantity τ that is a function of y1...yn, x1...xn, θ, σ, where
each i is a user, yi is a series of expenditures that each i has made, xi is a bunch of covariates for each user i
(i.e., age, gender, race, etc), and θ is a set of scalar quantities for the model. Similar to the earlier example,
our goal is to estimate θ given y1...yn, x1...xn.

Now, suppose we posit the following model assumptions:

xi ∼ Normal(0, σ2)

yi = θxi

We know that xi is a random quantity that has a normal distribution with population variance σ2, which is
now different from the earlier problem. Let us classify our variables as before. Because θ does not explicitly

3



come from a probability distribution, θ is a constant.

Before, we had assumed that our xi was not distributed. But our xi are still observed. So, we can classify
them as observed variables. Now, notice that we have a new quantity: σ2 an observed value. Since we don’t
make any assumptions about its distribution, it is an observed constant.

Classifying our yi is a little bit more complicated than before, but we will learn later on that because xi has
some variability, yi must also have some variability, even if θ is a constant. So, yi is an observed variable also.

Observed Unobserved
Variable x1...xn, y1...yn NA
Constant σ2 θ

We will now outline how the same problem statement but with different model statements can lead to different
2x2 tables.
Example 3.

Consider the following problem/model statement:

yi = number of days i purchases something

zi =

1 age(i) ≥ 30

0 age(i) < 30

In this problem, we have four settings, each of which will lead to a different 2x2 table.

• Example 4: zi is observed and zi ∼ iid Bernoulli(p)

• zi is observed and no assumptions about distribution

• zi is not given and zi ∼ iid Bernoulli(p)

• zi is not given and no assumptions about distribution

Let’s think about each of these settings individually.
Example 4. Consider the first problem/model statement from Example 3. We are given y1...yn, z1...zn, and
our model assumptions are as follows:

yi|zi, θ ∼ Bernoulli(θ + αzi) =

yi|zi = 1, θ ∼ Bernoulli(θ + α)

yi|zi = 0, θ ∼ Bernoulli(θ)

Let’s create the 2x2 table for this problem. We know y1...yn is definitely observed because it is given. Now is
it variable or constant? Well, it follows a distribution. And even though we don’t know explicitly what V(yi)
is, we can calculate it as V(yi) = E(V(yi|zi)) + V(E(yi|zi)). Now, we know that zi are given, but there is
nothing about their distribution, so zi is not variable.

Observed Unobserved
Variable y1...yn NA
Constant z1...zn θ, α

Now, let’s discuss the theoretical versus empirical distributions for zi a little more deeply:
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• V(zi) = 0 since we made no assumptions about the distribution of vi theoretically

• Now, if we computed the empirical variance:

1
n

n∑
i=1

(
zi −

∑n
i=1 zi

n

)2

> 0 (most likely).

However, the empirical variance has no bearing in our classification of zi as constant or variable. What
we believe zi to be comes only from our problem and model statements. In the absence of something
that explicitly states zi has a distribution, we consider zi a constant.

Example 5. Consider the second problem/model statement from Example 3. We are given y1...yn, z1...zn.
But now our model is as follows:

zi ∼ Bernoulli(p), p = 0.4

yi|zi ∼ Normal(θ + αzi, σ
2) =

yi|zi = 0 ∼ Normal(0, σ2)

yi|zi = 0 ∼ Normal(0 + α, σ2)

Let’s first classify all of our variables. Just as before in Example 4, yi has a distribution and is given to
us, so it is a known variable. Also, θ–a parameter describing the distribution for yi–is not given and has
no theoretical probability distribution, so it is an unknown constant. Likewise, α is not given and has no
theoretical variability, so it too is an unknown constant. Now, notice that zi has a distribution and is given,
so we now classify it as a known variable. The 2x2 table for this problem would look as follows:

Observed Unobserved
Variable y1...yn, z1...zn NA
Constant NA θ, α

Example 6. Consider the third problem/model statement from Example 3. We are given y1...yn, and our
model assumptions are as follows:

zi ∼ Bernoulli(p), p = 0.4

yi|zi ∼ Normal(θ + αzi, σ
2) =

yi|zi = 0 ∼ Normal(0, σ2)

yi|zi = 0 ∼ Normal(0 + α, σ2)

Notice, the model statement is the exact same as in Example 5, but our model statement is now different:
we do not know what z1...zn are, so it is unknown. So, since we can calculate a theoretical variance for zi,
which will be greater than zero, it will be variable. Thus, zi is an unknown variable. Other than that, it is
the exact same 2x2 table as Example 5 with the exact same reasoning. The fact that zi is not given has no
bearing on the classification of other variables.

Observed Unobserved
Variable y1...yn z1...zn

Constant NA θ, α

Example 7. Consider the first problem/model statement from Example 3. We are given y1...yn, and our
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model assumptions are as follows:

yi|zi, θ ∼ Bernoulli(θ + 2zi) =

yi|zi = 1, θ ∼ Bernoulli(θ + α)

yi|zi = 0, θ ∼ Bernoulli(θ)

Notice that this model statement is the exact same as in Example 4, but our model statement is now different:
we do not know what z1...zn are, so it is unknown. Additionally, if we were to calculate a theoretical variance
for zi, which we could by treating it as a random variable with probability 1, we would find that it has a
variance of zero. So, it is a constant. Thus, it is an unknown constant. Besides that, the 2x2 table for this
example and 4 are the exact same. The fact that z1...zn is now unknown should not have any impact on our
treatment of the other quantities.

Observed Unobserved
Variable y1...yn NA
Constant NA θ, α, z1...zn

Now that we know what known/unknown constants and variables are, we can start understanding the basics
of the language of modeling between disciplines. These are the common terms that will represent each cell of
our 2x2 table:

Observed Unobserved
Variable Observed Random Variables Latent Random Variables
Constant Known Constants Unknown Constants

Likelihood

A likelihood function is a function of the observed random variables–whatever they may be–given the constants
from the problem and model statements.

Definition 0.3: Proper likelihood

The proper likelihood is a representation of how well the empirical and theoretical distributions
align for our observed random variables. Mathematically–with observed random variables Y1, . . . , Yn,
realizations y1, . . . yn, and unknown constants θ–the proper likelihood is P(observed random variables|
unknown constants) = P(Y1 = y1, . . . , Yn = yn|θ).

Definition 0.4: Complete likelihood

The complete likelihood is a representation of how well the empirical and theoretical distributions
align for all our random variables, regardless of whether we observed them or not. Mathematically–with
realizations of our observed random variable y1, . . . yn, realizations of our unobserved random variable
x1, . . . , xn, and unknown constants θ–the complete likelihood is P(observed random variables, latent
random variables| unknown constants) = P(y1, . . . , yn, x1, . . . , xn|θ).

So, if given a problem/model statement (or equivalently a 2x2 table), we should be able to provide the
likelihood proper and the complete likelihood. If given latent random variables, then the complete likelihood
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is the simpler of the two. However, if we have latent random variables, we may need to integrate out the
latent random variables to get the proper likelihood (i.e., the probability of our observed random variables
given our constants).

One thing to note is that in probability theory, mathematicians often make a distinction between a random
variable and the realization of a random variable; the random variable itself has variability while the realization
is set and fixed. If we said the random variable X1 was realized as x1, which we write as X1 = x1, then x1 is
fixed. Because x1 does not change, it is technically a constant. However, all realizations are always constant
because they occurred in the past and are unchangeable. So, including both X1 and x1 in the 2x2 table is a
little redundant because if X1 is classified as an observed random variable, then we know its realizations
are what is being observed and realizations are always constants; so we know their place in the 2x2 table
because of X1’s location. Similarly, if we classified X1 as an unobserved random variable, then we know its
realizations are what is being unobserved; because realizations are constants, we know the realization x1’s
place just through X1’s role. We can get rid of this redundancy by considering only the random variables
instead of realizations in the 2x2 table.
Example 8. Reference Example 2 for the explicit problem and model statements. Here is the 2x2 table:

Observed Unobserved
Variable X1, X2, . . . , Xn, Y1, Y2, . . . , Yn NA
Constant σ2 θ

We have observed random variables, X1, X2, . . . , Xn, Y1, Y2, . . . , Yn, and an unknown constant, θ. So,

Proper likelihood = P(Y1 = y1, . . . , Yn = yn, X1 = x1, . . . , Xn = xn|θ).

Notice, there are no latent random variables, so the complete and proper likelihoods are equivalent.
Example 9. Refer to Example 4 for the explicit problem and model statements. Here is the 2x2 table:

Observed Unobserved
Variable y1...yn NA
Constant z1...zn θ, α

Notice, we have observed random variables y1...yn and unobserved constants z1...zn but no latent random
variables. Very similar to Example 8, the proper and complete likelihoods are equivalent:

Proper likelihood = complete likelihood = P(Y1 = y1, . . . , Yn = yn|Z1 = z1, . . . , Zn = zn).

Example 10. Refer to Example 6 for the explicit problem and model statements. Here is the 2x2 table:

Observed Unobserved
Variable y1...yn z1...zn

Constant NA θ, α

We now have observed random variables y1...yn, latent random variables z1...zn, and no observed constants.
The proper likelihood will still be P(Y1 = y1, . . . , Yn = yn|θ, α), but its calculation is somewhat difficult
because we must account for . So, what we can do is find the complete likelihood and integrate out the latent
variables:

Complete likelihood = P(Y1 = y1, . . . , Yn = yn, Z1 = z1, . . . , Zn = zn|α, θ).

7



Now, can get the likelihood proper from the complete likelihood:

Likelihood = P(Y1 = y1, . . . , Yn = yn|α, θ)

=
∫

P(Y1 = y1, . . . , Yn = yn, X1 = x1, . . . , Xn = xn|α, θ)dxi

=
∫

complete likelihood dxi.

Example 11. Let us find the likelihood for the following, very simple data generating process laid out in
Algorithm 1. Assume that we are given y1, . . . , yn.

for i = 1, . . . , n do
Yi

iid∼ Normal(µ, σ2).
end

Algorithm 1: Data Generating Process: Example 11

Then, because Y1, . . . , Yn come from a probability distribution and µ and σ have no explicitly stated probability
distributions, the 2x2 table for this problem would be given by

Observed Unobserved
Variable Y1, . . . , Yn

Constant µ, σ2

Then, the likelihood would be given by

Likelihood = P(Y1 = y1, . . . , Yn = yn|µ, σ2).

Because we assume that Y1, . . . , Yn are IID, we can rewrite the joint likelihood of Y1, . . . , Yn as the product
of individual likelihoods:

Likelihood = P(Y1 = y1, . . . , Yn = yn|µ, σ2)

=
n∏

i=1
P(Yi = yi|µ, σ2)

=
n∏

i=1
Normal(Yi = yi|µ, σ2).

Recall that the functional form of a Normally-distributed random variable, Yi, with mean µ and variance σ2

is given by
fY (yi) = 1√

2πσ2
e− (yi−µ)2

2σ2 .
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So,

Likelihood = P(Y1 = y1, . . . , Yn = yn|µ, σ2)

=
n∏

i=1
P(Yi = yi|µ, σ2)

=
n∏

i=1
Normal(Yi = yi|µ, σ2)

=
n∏

i=1

1√
2πσ2

e− (yi−µ)2

2σ2 .

In modeling situations, we often see that there is a different process for one set of the population in comparison
to another set of the population; for example, we can theorize that the distribution of house prices in Boston
may be very different than the distribution of house prices in the Philadelphia suburbs. Because we have
different processes for each subpopulation that we want to combine – or mix – into one process for the overall
population, we refer to such models as mixture models.

ggplot(data = data.frame(x = c(-50, 100)), aes(x)) +
stat_function(fun = dnorm, n = 101, args = list(mean = 50, sd = 10)) +
stat_function(fun = dnorm, n = 101, args = list(mean = 10, sd = 20), linetype = 'dashed') +

scale_y_continuous(breaks = NULL) +
labs(x = NULL, y = NULL) +
theme_bw()

−50 0 50 100

Figure 1: Mixture model example: dotted line represents distribution for one subset of the population, while
solid represents the distribution for a different subset of the population.

Definition 0.5: Mixture model

A mixture model is a probabilistic model in which different components of our population follow
different data generating processes.

Let us consider a few examples and illustrate how we would derive the likelihood for such a problem.
Example 12. Suppose we have a random sample of data from 43 students in a school, 20 of which are
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graduate students and 23 of which are undergraduate students. We want to help administrators redesign
curricula, for which they want to know how many courses the advisors should recommend that students take
per semester.s

We assume that a student i is a graduate student with probability p or an undergraduate with probability
1− p, which we represent by Zi. Undergraduates are given 7 course offerings, while graduates are given 3
course offerings. Students can take all or none of the courses offered to them. We assume that a student
decides to take each course independent of their decision to take another class; and the probability of taking
a single class is given by θg for graduate students and θu for undergraduate students. The number of courses
student i takes is given by Yi. Putting these together, we posit the following data generating process:

for i = 1, . . . , n do

Zi ∼ Bernoulli(p) Yi|Zi = zi ∼

{
Binomial(3, θg), zi = 1
Binomial(7, θu), zi = 0

end
Algorithm 2: DGP for Student Enrollments

We are given data on how many courses each student takes. However, we do not observe whether student is
classified as a graduate or undergraduate student. Let us find the likelihood for this problem.

As usual, we will first begin by classifying our quantities in our 2x2 table. We know that because Zi, Yi both
come from a distribution, they are random variables. All other quantities – p, θg, θu – are constants.

Additionally, because the only data we are given is Y1, . . . , Y43, everything else is unobserved. So, our 2x2
would look as follows:

Observed Unobserved
Variable Y1, . . . , Y43

Constant Z1, . . . , Z43 p, θg, θu

Now, we can start calculating proper likelihood, which is the probability of realizing our observed data given
the model’s unknown constants:

Likelihood = P(Y1 = y1, . . . , Y43 = y43|p, θg, θu).

However, here we run into a problem: the probability of realizing Yi depends on Zi’s outcome, which is nowhere
in our likelihood. To rectify this issue, we can take advantage of the idea of marginalizing distributions:
for two sets A and B, we can find the probability of a single set by integrating/summing “out” the other
set: P(A) =

∫
B
P(A,B)db. In this case, we need to introduce Z1, . . . , Z43; so, we can simply bring in this

information by including the integrals around the complete likelihood:

Likelihood = P(Y1 = y1, . . . , Y43 = y43|p, θg, θu)

=
∫

Z1

. . .

∫
Z43

P(Y1 = y1, . . . , Y43 = y43, Z1 = z1, . . . , Z43 = z43|p, θg, θu)dz1 . . . dz43.

Now, we can take advantage of the facts that all the Zi’s are independent of one another and that all the Yi’s
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are independent of one another. So,

Likelihood = P(Y1 = y1, . . . , Y43 = y43|p, θg, θu)

=
∫

Z1

. . .

∫
Z43

P(Y1 = y1, . . . , Y43 = y43, Z1 = z1, . . . , Z43 = z43|p, θg, θu)dz1 . . . dz43

=
∫

Z1

. . .

∫
Z43

P(Y1 = y1, Z1 = z1|p, θg, θu) · . . . · P(Y43 = y43, Z43 = z43|p, θg, θu)dz1 . . . dz43

=
∫

Z1

. . .

∫
Z43

43∏
i=1

P(Yi = yi, Zi = zi|p, θg, θu)dz1 . . . dz43.

Now comes another complication: we do not know the joint probability of Yi and Zi. By taking advantage of
Baye’s Rule, we know that

P(Yi = yi, Zi = zi) = P(Yi = yi|Zi = zi)P(Zi = zi).

Notice, we do know the quantities on the right hand side. From the data generating process,

P(Yi = yi|Zi = zi) =

Binomial(3, θg), zi = 1

Binomial(7, θu), zi = 0
,

and
P(Zi = zi) = Bernoulli(p).

We also know the functional form of Binomial and Bernoulli random variables, so

P(Yi = yi|Zi = zi) =

 3!
(3−yi)!(yi)! (θg)yi(1− θg)3−yi , zi = 1

7!
(7−yi)!(yi)! (θu)yi(1− θu)7−yi , zi = 0

,

and
P(Zi = zi) = pzi(1− p)(1− zi).

Now, let us simplify the problem and combine these different parts into the likelihood calculation for a single
student i:

Likelihood =
∫

Zi

P(Yi = yi|Zi = zi, θg, θu, p)P(Zi = zi)dzi.

We know that if Zi = 1, then Yi ∼ Binomial(3, θg), so
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Likelihood|Zi = 1 =
∫

Zi

P(Yi = yi|Zi = 1, θg, θu, p)P(Zi = 1)dzi

=
∫

Zi

P(Yi = yi|Zi = 1, θg, θu, p)P(Zi = 1)dzi

=
∫

Zi

3!
(3− yi)!(yi)!

(θg)yi(1− θg)3−yipdzi.

And similarly, we know that if Zi = 0, then Yi ∼ Binomial(7, θu), so

Likelihood|Zi = 0 =
∫

Zi

P(Yi = yi|Zi = 0, θg, θu, p)P(Zi = 0)dzi

=
∫

Zi

P(Yi = yi|Zi = 0, θg, θu, p)P(Zi = 0)dzi

=
∫

Zi

7!
(7− yi)!(yi)!

(θg)yi(1− θg)7−yi(1− p)dzi.

However, we need to be able to consider the likelihoods for both cases together. So, we will take advantage of
the facts that x0 = 1 and x1 = x for any real number x. Then, we can combine these two cases together in
the following way:

Likelihood =


∫

Zi
3!

(3−yi)!(yi)! (θg)yi(1− θg)3−yipdzi, zi = 1∫
Zi

7!
(7−yi)!(yi)! (θg)yi(1− θg)7−yi(1− p)dzi, zi = 0

=
[∫

Zi

3!
(3− yi)!(yi)!

(θg)yi(1− θg)3−yipdzi

]zi [∫
Zi

7!
(7− yi)!(yi)!

(θg)yi(1− θg)7−yi(1− p)dzi

]1−zi

.

Notice, when Zi = 1, then[∫
Zi

3!
(3− yi)!(yi)!

(θg)yi(1− θg)3−yipdzi

]zi [∫
Zi

7!
(7− yi)!(yi)!

(θg)yi(1− θg)7−yi(1− p)dzi

]1−zi

=
[∫

Zi

3!
(3− yi)!(yi)!

(θg)yi(1− θg)3−yipdzi

]1 [∫
Zi

7!
(7− yi)!(yi)!

(θg)yi(1− θg)7−yi(1− p)dzi

]1−1

=
[∫

Zi

3!
(3− yi)!(yi)!

(θg)yi(1− θg)3−yipdzi

] [∫
Zi

7!
(7− yi)!(yi)!

(θg)yi(1− θg)7−yi(1− p)dzi

]0

=
[∫

Zi

3!
(3− yi)!(yi)!

(θg)yi(1− θg)3−yipdzi

]
· 1

=
∫

Zi

3!
(3− yi)!(yi)!

(θg)yi(1− θg)3−yipdzi

= Likelihood|Zi = 1.
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And when Zi = 0, then[∫
Zi

3!
(3− yi)!(yi)!

(θg)yi(1− θg)3−yipdzi

]zi [∫
Zi

7!
(7− yi)!(yi)!

(θg)yi(1− θg)7−yi(1− p)dzi

]1−zi

=
[∫

Zi

3!
(3− yi)!(yi)!

(θg)yi(1− θg)3−yipdzi

]0 [∫
Zi

7!
(7− yi)!(yi)!

(θg)yi(1− θg)7−yi(1− p)dzi

]1−0

= 1 ·
[∫

Zi

7!
(7− yi)!(yi)!

(θg)yi(1− θg)7−yi(1− p)dzi

]
=
∫

Zi

7!
(7− yi)!(yi)!

(θg)yi(1− θg)7−yi(1− p)dzi

= Likelihood|Zi = 0.

So, we have found a way to combine the likelihoods of each case into one, non-piecewise form, that is also
differentiable.

Now, we can put all the pieces together to find the joint likelihood of all 43 observations:

Likelihood = P(Y1 = y1, . . . , Y43 = y43|p, θg, θu)

=
∫

Z1

. . .

∫
Z43

[
3!

(3− yi)!(yi)!
(θg)yi(1− θg)3−yip

]zi [ 7!
(7− yi)!(yi)!

(θg)yi(1− θg)7−yi(1− p)
]1−zi

dz1 . . . dz43.

Using R for Probabilistic Modeling

Applied statistics and data science often deals with simulations to create synthetic data. We then use the
simulated data to validate methods with clean data before working with real, messy data; or we use them
to verify analytical solutions; or we use them to run experiments in a perfectly controlled world before
implementing them in practice. In short, simulations are essential to the study of data science.

To actually put simulations into practice, we take advantage of the algorithmic construction of the data
generating process of a model and translate the process to R and work with the data there. Let us consider a
few use-cases of some simulations.
Example 13. Suppose we are working for a clothing manufacturing company and want to help them
re-index their sizing charts. They have three sizes: small, medium, and large. They want about thirty-three
percent of the population to lie within each of the sizes. The company has a sample of heights for 50 people
in inches: (58, 87, 64, 65, 48, 79, 77, 46, 50, 69, 35, 101, 77, 78, 88, 85, 71, 53, 77,
52, 103, 63, 74, 27, 25, 82, 42, 74, 52, 77, 84, 43, 49, 58, 91, 20, 101, 100, 46, 94,
86, 69, 83, 78, 35, 85, 43, 71, 34, 25)

Using this information, we will need to identify at what heights the company should re-index the sizing charts.

for i = 1, . . . , 50 do
Yi ∼ Normal(µ, σ2)

end
Algorithm 3: DGP for Example 13
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We are also given the data generating process laid out in Algorithm ??.

While we will more formally learn how to go through this process completely in later sections of this book, let
us try to simulate some data and plot the likelihood for the given data and some possible values of µ and σ2.

First, we need to write the 2x2 table and the likelihood for this problem. The only quantities we have are
Y1, . . . , Y50, µ, and σ2. Since we only observe Y1, . . . , Y50, Y1, . . . , Y50 are our only observed variables and
µ, σ2 are unobserved constants:

Observed Unobserved
Variable Y1, . . . , Y50

Constant µ, σ2

Notice, this 2x2 table and DGP is identical to the problem outlined in Example 11. So, we can reuse the
likelihood we calculated there:

Likelihood =
n∏

i=1

1√
2πσ2

e− (yi−µ)2

2σ2 .

Because we want to plot the likelihood of the given data, we need to calculate the likelihood itself, which we
can do using R:

likelihood_calc <- function(data, mu, sigma) {
# parameters:

# data: a list of y_1, ..., y_50
# mu: potential mean
# sigma: potential standard deviation

# returns:
# numeric representing likelihood(mu, sigma | data)

# initialize likelihood
joint_likelihood <- 1
for(y_i in data) {

# calculate likelihood for individual i
lik_i <- 1/(sqrt(2 * pi * sigmaˆ2))*exp(-(1/(2 * sigmaˆ2))*(y_i - mu)ˆ2)
# augment joint likelihood by multiplying by individual i's likelihood
joint_likelihood <- lik_i * joint_likelihood

}

return(joint_likelihood)
}

Now, we can calculate the likelihood of the given data for a series of possible means and variances:

# save data
y_data <- c(58, 87, 64, 65, 48, 79, 77, 46, 50, 69, 35, 101, 77, 78, 88, 85, 71, 53, 77, 52, 103, 63, 74, 27,
25, 82, 42, 74, 52, 77, 84, 43, 49, 58, 91, 20, 101, 100, 46, 94, 86, 69, 83, 78, 35, 85, 43, 71,
34, 25)
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# potential values of mu and sigma
mu_list <- c(10, 20, 30, 40, 50, 60, 70, 80, 90, 100)
sigma_list <- c(10, 20, 30, 40, 50, 60, 70, 80, 90, 100)

likelihoods <- c()
tried_mu <- c()
tried_sigma <- c()
for(mu in mu_list) {

for(sigma in sigma_list) {
tried_mu <- c(tried_mu, mu)
tried_sigma <- c(tried_sigma, sigma)
likelihoods <- c(likelihoods, likelihood_calc(data = y_data,

mu = mu,
sigma = sigma))

}
}

Now, we can store this data in a dataframe and plot the data using ggplot2:

# make the data frame
likelihood_data <- data.frame(mu = tried_mu,

sigma = tried_sigma,
likelihood = likelihoods)

# plot the data
library(ggplot2)
ggplot(likelihood_data) +
geom_point(aes(x = mu, y = sigma, color = likelihood), size = 7) +
labs(x = 'Potential mu',

y = 'Potential sigma',
color = 'Likelihood')
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Figure 2: Likelihood of Potential mean and standard deviations
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Figure 2 displays the potential values of µ on the x-axis and the potential values of σ on the y-axis with
each of the points colored by the likelihood; the higher the likelihood, the brighter the point’s color. Recall,
the likelihood quantifies the “fit” of the model’s parameters taking on specific values; so, the higher the
likelihood for specific parameter values, the greater the chances that the true model parameters are those
values. Because we see the brightest blue point at (70,20), we can “guess” that the model’s parameters are
µ ≈ 70 and σ2 ≈ 202 = 40.
Example 14. Now, let us consider using R to study a mixture model case. Refer to Example 12 for the
actual setup. In the problem, we want to estimate θu and θg. A large complication in this problem is that we
do not know the true values of Z1, . . . , Z43: in other words, we do not know which students are graduate
students and which are undergraduate.

A colleague suggests that to overcome this problem, we can assume p = 20
43 (so, p is now a known constant);

and then we can randomly select 20 of our 43 students and claim they are graduate students. Now that
we have "data" on who is a graduate student and who is not, we can simply calculate the sample success
probability of the randomly classified graduate students and undergraduate students each. Doing so allows
us to find θ̂u and θ̂g: estimates of our unknown constants. To see if this approach works or not, we will run
some simulations.

First, we will translate the DGP to R and simulate data for θu = 0.4 and θg = 0.6. Then, we will try to
recover θu and θg by calculating the sample success probabilities.

In order to simulate data, we will translate the likelihood to R code. For this, we need to know how to draw
samples from the Bernoulli distribution and the Binomial distribution, which we can accomplish using the
function rbinom. rbinom takes three arguments:

1. n: the number of observations we want from the Binomial distribution

2. size: the number of independent Bernoulli trials

3. prob: the probability of success in each of the independent Bernoulli trials

Recall that the Binomial(N, p) distribution represents the number of successes in N independent Bernoulli
trials. So, when N = 1, the Binomial variable only has one Bernoulli trial. So, Bernoulli(p) = Binomial(1, p).
Then, that means we can use rbinom with size = 1 for our Bernoulli distribution.

So, we can translate Z1, . . . , Z43
iid∼ Bernoulli( 20

43 ) into rbinom(n = 43, size = 1, prob = 20/43). And
we can convert Yi ∼ Binomial(7, θu) into \texttt{rbinom(n = 1, size = 7, prob = theta_u)} for the code
argument \texttt{theta_g}. Lastly, we can express Yi ∼ Binomial(3, θg) as \texttt{rbinom(n = 1, size = 3,
prob = theta_g)}. So, our R representation of the DGP would be

# setting the seed ensures we get the same randomness to replicate results
set.seed(999)
dgp <- function(theta_u, theta_g) {

# parameters:
# theta_u: success probability of undergraduates taking a class
# theta_g: success probability of graduates taking a class

# returns:
# data frame with four columns:

# 1. values of z_1, ..., z_43
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# 2. values of y_1, ..., y_43
# 3. value of theta_u
# 4. value of theta_g

# simulate 43 observations
# first randomly assign each student's class: graduate (z_i = 1) or undergraduate (z_i = 0)
z_vector <- rbinom(n = 43, size = 1, prob = 20/43)

# based on each student's classification, sample the number of courses they take
y_vector <- c()
for(z_i in z_vector) {

if(z_i == 1) y_i <- rbinom(n = 1, size = 3, prob = theta_g)
if(z_i == 0) y_i <- rbinom(n = 1, size = 7, prob = theta_u)

y_vector <- c(y_vector, y_i)
}

# make a data frame for Z_i, Y_i, and its corresponding parameter inputs
return(data.frame(Z = z_vector,

Y = y_vector,
theta_u = theta_u,
theta_g = theta_g))

}

Notice that we return a data frame with four columns even though we only need data on Y1, . . . , Y43. Including
this extra information does not hurt our program and can help us account for other situations; for example,
we can check how well using the sample success probabilities as estimates are when we know Z1, . . . , Z43.

Now, let us write a function that randomly assigns each student in our observed data set to the graduate
class with probability 20

43 :

estimate_thetas <- function(y_data) {
# parameters:

# y_data: a list of 43 elements representing the number of courses each of the 43 students take
# returns:

# estimates for theta_u and theta_g

# classify each student as graduate (1) with probability 23/43
z_vector <- rbinom(43, 1, 23/43)

# calculate sample success probability for all students
theta_g_hat <- 0
theta_u_hat <- 0

n_grads <- 0
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n_ugrad <- 0
for(i in 1:43) {

if(z_vector[i] == 1) {
theta_g_hat <- theta_g_hat + y_data[i]/3
n_grads <- n_grads + 1

} else {
theta_u_hat <- theta_u_hat + y_data[i]/7
n_ugrad <- n_ugrad + 1

}
}

theta_g_hat <- theta_g_hat/n_grads
theta_u_hat <- theta_u_hat/n_ugrad
return(list(theta_g_hat = theta_g_hat, theta_u_hat = theta_u_hat))

}

In order to validate this method, we will simulate data 1,000 times and run through this estimation strategy
for each of the simulated times. By re-simulating data and re-estimating the unknown constants, we are able
to understand how well this strategy works; when we simulate probabilistic data, there will be some data that
is very representative data and also unrepresentative data that has realizations that take on extremes in the
distribution. For example, it is possible to simulate data in which Y1 = . . . = Y43 = 0. But if θu and θg are
much greater than 0, there is still a possibility of observing such data. So, we run the simulation a number of
times so that we can ensure that our discoveries are not dependent on a single, potentially edge case.

For each set of simulated data, we will have θ̂u and θ̂g given by the sample success probability. The sample
success probability is simply the number of successful trials (i.e., yi) divided by the number of total trials in
a Binomially distributed random variable.

Now, because we will have a total of 1,000 values, we can then build an empirical distribution for θ̂u and
θ̂g and see if the estimated and actual values are close or not. We will specifically try this for θu = 0.4 and
θg = 0.6.

From Figure 3, we see the relationship between the estimates for θ̂u and θu, as well as the relationship between
θ̂g and θ̂u. Overall, we see the distribution is approximately centered around 0.35 for θ̂u, which may or may
not be a poor estimate. However, ˆthetag is centered around 0.8, which is a wide deviation from 0.6. While we
will discuss how to evaluate the strength of an estimation strategy later, this basic framework of comparing
the estimates to the actual outcome is a useful exercise that illustrates R’s utility in probabilistic modeling.
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Figure 3: Simulation results for the proposed estimation strategy. Each figure compares the empirical
distribution of the statistic estimate to the actual value of the statistic (dashed line). The closer the dashed
line is to the "mode" of the empirical distribution, the better the proposed strategy for estmating the unknown
constants.
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